# Comparison with Other MMM Libraries Given the popularity of the Media Mix Modelling (MMM) approach, there are many packages available to perform MMM. Here's a high-level overview of how Abacus compares to some of the most popular packages. | Criteria | Abacus | PyMC-Marketing | Lightweight-MMM | Robyn | Orbit KTR / Karpiu | Recast | |----------------------------------|-----------------------|------------------|-------------------|-------------------|--------------------|--------| | **Language** | Python | Python | Python | R | Python | RStan | | **Approach** | Bayesian | Bayesian | Bayesian | ML (Ridge) | Bayesian | Bayesian | | **Inference Type** | Estimation | Estimation | Estimation | Predictive | Predictive | Estimation | | **Foundation** | PyMC / PyTensor | PyMC | NumPyro/JAX | GlmNet + Nevergrad| STAN/Pyro | STAN | | **Company** | T&Pm | PyMC Labs | Google | Meta | Uber | Recast | | **Open Source** | Own model | Yes | Yes | Yes | Yes | No | | **Model** | Build | FOSS / Adopt | FOSS / Adopt | FOSS / Adopt | FOSS / Adopt | Buy | | **Budget Optimizer** | Yes | Yes | Yes | Yes | No | Yes | | **Time-Varying Intercept** | No | Yes | No | No | Yes | Yes | | **Time-Varying Coefficients** | No | Coming Soon* | No | No | Yes | Yes | | **Custom Priors** | Yes | Yes | Yes | No | No | Yes | | **Lift-Test Calibration** | Yes | Yes | No | Yes | No | Yes | | **Out-of-Sample Predictions** | Yes | Yes | Yes | No | Yes | Yes | | **Unit-Tested** | Yes | Yes | Yes | No | Yes | ? | | **Forecasting Module** | Yes | No | No | No | No | Yes | | **Scenario Planning Module** | Yes | No | No | No | No | Yes | | **Optimisation period** | Flexible | Immediate | Immediate | Future | None | Unknown | *Note: "FOSS / Adopt" indicates the library is Free and Open Source Software, allowing users to adopt and potentially modify it. "Build" indicates a model primarily developed in-house (like Abacus). "Buy" indicates a commercial product.* *\* Feature status may change; check library documentation.*